| |
кроме поверхностных изысканий, никто ничего не уста-
новил, исключая Демокрита. Что же касается его, то получается такое
впечатление, что он предусмотрел все, да и в методе вычислений он
выгодно отличается от других".
Вводной частью научной системы Демокрита была "каноника", в ко-
торой формулировались и обосновывались принципы атомистической фило-
софии. Затем следовала физика, как наука о различных проявлениях бы-
тия, и этика. Каноника входила в физику в качестве исходного разде-
ла, этика же строилась как порождение физики. В философии Демокрита
прежде всего устанавливается различие между "подлинно сущим" и тем,
что существует только в "общем мнении". Подлинно сущими считались
лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть та-
кая же реальность, как атомы (бытие). "Великая пустота" безгранична
и заключает в себе все существующее, в ней нет ни верха, ни низа, ни
края, ни центра, она делает прерывной материю и возможным ее движе-
ние. Бытие образуют бесчисленные мельчайшие качественно однородные
первотельца, различающиеся между собой по внешним формам, размеру,
положению и порядку, они далее неделимы вследствие абсолютной твер-
дости и отсутствия в них пустоты и "по величине неделимы". Атомам
самим по себе свойственно непрестанное движение, разнообразие кото-
рого определяется бесконечным разнообразием форм атомов. Движение
атомов вечно и в конечном итоге является причиной всех изменений в
мире.
Задача научного познания, согласно Демокриту, чтобы наблюдаемые
явления свести к области "истинного сущего" и дать им объяснение ис-
ходя из общих принципов атомистики. Это может быть достигнуто пос-
редством совместной деятельности ощущений и разума. Гносеологическую
позицию Демокрита Маркс сформулировал следующим образом: "Демокрит
не только не удалялся от мира, а, наоборот, был эмпирическим естест-
воиспытателем". Содержание исходных философских принципов и гносео-
логические установки определили основные черты научного метода Де-
мокрита:
а) В познании исходить от единичного;
б) Любые предмет и явление разложимы до простейших элементов
(анализ) и объяснимы исходя из них (синтез);
в) Различать существование "по истине" и "согласно мнению";
г) Явления действительности - это отдельные фрагменты упорядо-
ченного космоса, который возник и функционирует в результате дейс-
твий чисто механической причинности.
Математика по праву должна считаться у Демокрита первым разде-
лом собственно физики и следовать непосредственно за каноникой. В
самом деле, атомы качественно однородны и их первичные свойства име-
ют количественный характер. Однако было бы неправильно трактовать
учение Демокрита как разновидность пифагореизма, поскольку Демокрит
хотя и сохраняет идею господства в мире математической закономернос-
ти, но выступает с критикой априорных математических построений пи-
фагорейцев, считая, что число должно выступать не законодателем при-
роды, а извлекаться из нее. Математическая закономерность выявляется
Демокритом из явлений действительности, и в этом смысле он предвос-
хищает идеи математического естествознания. Исходные начала матери-
ального бытия выступают у Демокрита в значительной степени как мате-
матические объекты, и в соответствии с этим математике отводится
видное место в системе мировоззрения как науке о первичных свойствах
вещей. Однако включение математики в основание мировоззренческой
системы потребовало ее перестройки, приведения математики в соот-
ветствие с исходными философскими положениями, с логикой, гносеоло-
гией, методологией научного исследования. Созданная таким образом
концепция математики, называемая концепцией математического атомиз-
ма, оказалась существенно отличной от предыдущих.
У Демокрита все математические объекты (тела, плоскости, линии,
точки) выступают в определенных материальных образах. Идеальные
плоскости, линии, точки в его учении отсутствуют. Основной процеду-
рой математического атомизма является разложение геометрических тел
на тончайшие листики (плоскости), плоскостей - на тончайшие нитки
(линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет
малую, но ненулевую величину и далее неделим. Теперь длина линии оп-
ределяется как сумма содержащихся в ней неделимых частиц. Аналогично
решается вопрос о взаимосвязи линий на плоскости и плоскостей в те-
ле. Число атомов в конечном объеме пространства не бесконечно, хотя
и настолько велико, что недоступно чувствам. Итак, главным отличием
учения Демокрита от рассмотренных ранее является отрицание им беско-
нечной делимости. Таким образом он решает проблему правомерности те-
оретических построений математики, не сводя их к чувственно воспри-
нимаемым образам, как это делал Протагор. Так, на рассуждения Прота-
гора о касании окружности и прямой Демокрит мог бы ответить, что
чувства, являющиеся отправным критерием Протагора, показывают ему,
что чем точнее чертеж, тем меньше участок касания; в действительнос-
ти же этот участок настолько мал, что не поддается чувственному ана-
лизу, а относится к области истинного познания.
Руководствуясь положениями математического атомизма, Демокрит
проводит ряд конкретных математических исследований и достигает вы-
дающихся результатов (например, теория математической перспективы и
проекции). Кроме того, он сыграл, по свидетельству Архимеда, немало-
важную роль в доказательстве Эвдоксом теорем об объеме конуса и пи-
рамиды. Нельзя с уверенностью сказать, пользовался ли он при решении
этой задачи методами анализа бесконечно малых. А.О.Маковельский пи-
шет: "Демокрит вступил на путь, по которому дальше пошли Архимед и
Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Де-
мокрит не сделал последнего решительного шага. Он не допускает безг-
раничного увеличения числа слагаемых, образующих в своей сумме дан-
ный объем. Он принимает лишь чрезвычайно большое, не поддающееся ис-
числению вследствие своей огромности число этих слагаемых".
Выдающимся достижением Демокрита в математике явилась также его
идея о построении теоретической математики как системы. В зародыше-
вой форме она представляет собой идею аксиоматического построения
математики, которая затем была развита в методологическом плане Пла-
тоном и получила логически развернутое положение у Аристотеля.
ПЛАТОНОВСКИЙ ИДЕАЛИЗМ
Сочинения Платона (427-347 гг. до н.э.) - уникальное явление в
отношении выделения философской концепции. Это высокохудожественное,
захватывающее описание самого процесса становления концепции, с сом-
нениями и неуверенностью, подчас с безрезультатными попытками разре-
шения поставленного вопроса, с возвратом к исходному пункту, много-
численными повторениями и т.п. Выделить в творчестве Платона ка-
кой-либо аспект и систематически изложить его довольно сложно, так
как приходится реконструировать мысли Платона из отдельных высказы-
ваний, которые настолько динамичны, что в процессе эволюции мысли
порой превращаются в свою противоположность.
Платон неоднократно высказывал свое отношение к математике и
она всегда оценивалась им очень высоко: без математических знаний
"человек с любыми природными свойствами не станет блаженным", в сво-
ем идеальном государстве он предполагал "утвердить законом и убедить
тех, которые намереваются занять в городе высокие должности, чтобы
они упражнялись в науке счисления". Систематическое широкое исполь-
зование математического материала имеет место у Платона, начиная с
диалога "Менон", где Платон подводит к основному выводу с помощью
геометрического доказательства. Именно вывод этого диалога о том,
что познание есть припоминание, стал основополагающим принципом пла-
тоновской гносеологии.
Значительно в большей мере, чем в гносеологии, влияние матема-
тики обнаруживается в онтологии Платона. Проблема строения матери-
альной действительности у Платона получила такую трактовку: мир ве-
щей, воспринимаемый посредством чувств, не есть мир истинно сущест-
вующего; вещи непрерывно возникают и погибают. Истинным бытием обла-
дает мир идей, которые бестелесны, нечувственны и выступают по отно-
шению к вещам как их причины и образы, по которым эти вещи создают-
ся. Далее, помимо чувственных предметов и идей он устанавливает ма-
тематические истины, которые от чувственных предметов отличаются
тем, что вечны и неподвижны, а от идей - тем, что некоторые матема-
тические истины сходна друг с другом, идея же всякий раз только од-
на. У Платона в качестве материи началами являются большое и малое,
а в качестве сущности - единое, ибо идеи (они же числа) получаются
из большого и малого через приобщение их к единству. Чувственно
воспринимаемый мир, согласно Платону, создан Богом. Процесс построе-
ния космоса описан в диалоге "Тимей". Ознакомившись с этим описани-
ем, нужно признать, что Создатель был хорошо знаком с математикой и
на многих этапах творения существенно использовал математические по-
ложения, а порой и выполнял точные вычисления.
Посредством математических отношений Платон пытался охарактери-
зовать и некоторые явления общественной жизни, примером чего может
служить трактовка социального отношения "равенство" в диалоге "Гор-
гий" и в "Законах". Можно заключить, что Платон существенно опирался
на математику при разработке основных разделов своей философии: в
концепции "познание - припоминание", учении о сущности материального
бытия, об устройстве космоса, в трактовке социальных явлений и т.д.
Математика сыграла значительную роль в конструктивном оформлении его
философской системы. Так в чем же заключалась его концепция матема-
тики?
Согласно Платону, математические науки (арифметика, геометрия,
астрономия и гармония) дарованы человеку богами, которые "произвели
число, дали идею времени и возбудили потребность исследования все-
ленной". Изначальное назначение математики в том, чтобы "очищался и
оживлялся тот орган души человека, расстроенный и ослепленный иными
делами", который "важнее, чем тысяча глаз, потому что им одним со-
зерцается истина". "Только никто не пользуется ею (математикой) пра-
вильно, как наукою, влекущей непременно к сущему". "Неправильность"
математики Платон видел прежде всего в ее применимости для решения
конкретных практических задач. Нельзя сказать, чтобы он вообще отри-
цал практическую применимость математики. Так, часть геометрии нужна
для "расположения лагерей", "при всех построениях как во время самих
сражений, так и во время походов". Но, по мнению Платона, "для таких
вещей ...достаточна малая часть геометрических и арифметических вык-
ладок, часть же их большая, простирающаяся далее, должна ...способс-
твовать легчайшему усвоению идеи блага". Платон отрицательно отзы-
вался о тех попытках использования механических методов для решения
математических задач, которые имели место в науке того времени. Его
неудовлетворенность вызывало также принятое современниками понимание
природы математических объектов. Рассматривая идеи своей науки как
отражение реальных связей действительности, математики в своих ис-
следованиях наряду с абстрактными логическими рассуждениями широко
использовали чувственные образы, геометрические построения. Платон
всячески старается убедить, что объекты математики существуют обо-
собленно от реального мира, поэтому при их исследовании неправомерно
прибегать к чувственной оценке.
Таким образом, в исторически сложившейся системе математических
знаний Платон выделяет только умозрительную, дедуктивно построенную
компоненту и закрепляет за ней право называться математикой. История
математики мистифицируется, теоретические разделы резко противопос-
тавляются вычислительному аппарату, до предела сужается область при-
ложения. В таком искаженном виде некоторые реальные стороны матема-
тического познания и послужили одним из оснований для построения
системы объективного идеализма Платона. Ведь сама по себе математика
к идеализму вообще не ведет, и в целях построения идеалистических
систем ее приходится существенно деформировать.
Вопрос о влиянии, оказанном Платоном на развитие математики,
довольно труден. Длительное время господствовало убеждение, что
вклад Платона в математику был значителен. Однако более глубокий
анализ привел к изменению этой оценки. Так, О.Нейгебауэр пишет: "Его
собственный прямой вклад в математические знания, очевидно, был ра-
вен нулю... Исключительно элементарный характер примеров математи-
ческих рассуждений, приводимых Платоном и Аристотелем, не подтверж-
дает гипотезы о том, что Эвдокс или Теэтет чему-либо научились у
Платона... Его совет астрономам заменить наблюдения спекуляцией мог
бы разрушить один из наиболее значительных вкладов греков в точные
науки". Такая аргументация вполне убедительна; можно также согла-
ситься и с тем, что идеалистическая философия Платона в целом сыгра-
ла отрицательную роль в развитии математики. Однако не следует забы-
вать о сложном характере этого воздействия.
Платону принадлежит разработка некоторых важных методологичес-
ких проблем математического познания: аксиоматическое построение ма-
тематики, исследование отношений между математическими методами и
диалектикой, анализ основных форм математического знания. Так, про-
цесс доказательства необходимо связывает набор доказанных положений
в систему, в основе которой лежат некоторые недоказуемые положения.
Тот факт, что начала математических наук "суть предположения", может
вызвать сомнение в истинности всех последующих построений. Платон
считал такое сомнение необоснованным. Согласно его объяснению, хотя
сами математические науки, "пользуясь предположениями, оставляют их
в неподвижности и не могут дать для них основания", предположения
находят основания посредством диалектики. Платон высказал и ряд дру-
гих положений, оказавшихся плодотворными для развития математики.
Так, в диалоге "Пир" выдвигается понятие предела; идея выступает
здесь как предел становления вещи.
Критика, которой подвергались методология и мировоззренческая
система Платона со стороны математиков, при всей своей важности не
затрагивала сами основы идеалистической концепции. Для замены разра-
ботанной Платоном методологии математики более продуктивной систе-
мой нужно было подвергнуть критическому разбору его учение об идеях,
основные разделы его философии и как следствие этого = его воззрение
на математику. Эта миссия выпала на долю ученика Платона - Аристоте-
ля.
СИСТЕМА ФИЛОСОФИИ МАТЕМАТИКИ АРИСТОТЕЛЯ
К.Маркс назвал Аристотеля (384-322 гг. до н.э.) "величайшим фи-
лософом древности". Основные вопросы философии, логики, психологии,
естествознания, техники, политики, этики и эстетики, поставленные в
науке Древней Греции, получили у Аристотеля полное и всестороннее
освещение. В математике он, по-видимому, не проводил конкретных ис-
следований, однако важнейшие стороны математического познания были
подвергнуты им глубокому философскому анализу, послужившему методо-
логической основой деятельности многих поколений математиков.
Ко времени Аристотеля теоретическая математика прошла значи-
тельный путь и достигла высокого уровня развития. Продолжая традицию
философского анализа математического познания, Аристотель поставил
вопрос о необходимости упорядочивания самого знания о способах усво-
ения науки, о целенаправленной разработке искусства ведения познава-
тельной деятельности, включающего два основных раздела: "образован-
ность" и "научное знание дела". Среди известных сочинений Аристотеля
нет специально посвященных изложению методологических проблем мате-
матики. Но по отдельным высказываниям, по использованию математичес-
кого материала в качестве иллюстраций общих методологических положе-
ний можно составить представление о том, каков был его идеал постро-
ения системы математических знаний.
Исходным этапом познавательной деятельности, согласно Аристоте-
лю, является обучение, которое "основано на (некотором) уже ранее
имеющемся знании... Как математические науки, так и каждое из прочих
искусств приобретается (именно) таким способом". Для отделения зна-
ния от незнания Аристотель предлагает проанализировать "все те мне-
ния, которые по-своему высказывали в этой области некоторые мыслите-
ли" и обдумать возникшие при этом затруднения. Анализ следует прово-
дить с целью выяснения четырех вопросов: "что (вещь) есть, почему
(она) есть, есть ли (она) и что (она) есть".
Основным принципом, определяющим всю структуру "научного знания
дела", является принцип сведения всего к началам и воспроизведения
всего из начал. Универсальным процессом производства знаний из на-
чал, согласно Аристотелю, выступает доказательство. "Доказательством
же я называю силлогизм, - пишет он, - который дает знания". Изложе-
нию теории доказательного знания полностью посвящен "Органон" Арис-
тотеля. Основные положения этой теории можно сгруппировать в разде-
лы, каждый из которых раскрывает одну из трех основных сторон мате-
матики как доказывающей науки: "то, относительно чего доказывается,
то, что доказывается и то, на основании чего доказывается". Таким
образом, Аристотель дифференцированно подходил к объекту, предмету и
средствам доказательства.
Существование математических объектов признавалось задолго до
Аристотеля, однако пифагорейцы, например, предполагали, что они на-
ходятся в чувственных вещах, платоники же, наоборот, считали их су-
ществующими отдельно. Согласно Аристотелю:
1. В чувственных вещах математические объекты не существуют,
так как "находиться в том же самом месте два тела не в состоянии";
2. "Невозможно и то, чтобы такие реальности существовали обо-
собленно".
Аристотель считал предметом математики "количественную опреде-
ленность и непрерывность". В его трактовке "количеством называется
то, что может быть разделено на составные части, каждая из кото-
рых ...является чем-то одним, данным налицо. То или другое количест-
во есть множество, если его можно счесть, это величина, если его
можно измерить". Множеством при этом называется то, "что в возмож-
ности (потенциально) делится на части не непрерывные, величиною -
то, что делится на части непрерывные". Прежде чем дать определение
непрерывности, Аристотель рассматривает понятие бесконечного, так
как "оно относится к категории количества" и проявляется прежде все-
го в непрерывном. "Что бесконечное существует, уверенность в этом
возникает у исследователей из пяти оснований: из времени (ибо оно
бесконечно); из разделения величин..; далее, только таким образом не
иссякнут возникновение и уничтожение, если будет бесконечное, откуда
берется возникающее. Далее, из того, что конечное всегда граничит с
чем-нибудь, так как необходимо, чтобы одно всегда граничило с дру-
гим. Но больше всего -...на том основании, что мышление не останав-
ливается: и число кажется бесконечным, и математические величины".
Существует ли бесконечное как отдельная сущность или оно является
акциденцией величины или множества? Аристотель принимает второй ва-
риант, так как "если бесконечное не есть ни величина, ни множество,
а само является сущностью..., то оно будет неделимо, так как делимое
будет или величиной, или множеством. Если же оно не делимо, оно не
бесконечно в смысле непроходимого до конца". Невозможность математи-
ческого бесконечного как неделимого следует из того, что математи-
ческий объект - отвлечение от физического тела, а "актуально недели-
мое бесконечное тело не существует". Число "как что-то отдельное и в
то же время бесконечное" не существует, ведь "...если возможно пе-
ресчитать счислимое, то будет возможность пройти до конца и беско-
нечное". Таким образом, бесконечность здесь в потенции существует,
актуально же - нет.
Опираясь на изложенное выше понимание бесконечного, Аристотель
определяет непрерывность и прерывность. Так, "непрерывное есть само
по себе нечто смежное. Смежное есть то, что, следуя за другим, каса-
ется его". Число как типично прерывное (дискретное) образование фор-
мируется соединением дискретных, далее неделимых элементов - единиц.
Геометрическим аналогом единицы является точка; при этом соединение
точек не может образовать линию, так как "точкам, из которых было бы
составлено непрерывное, необходимо или быть непрерывными, или ка-
саться друг друга". Но непрерывными они не будут: "ведь края точек
не образуют чего-нибудь единого, так как у неделимого нет ни края,
ни другой части". Точки не могут и касаться друг друга, поскольку
касаются "все предметы или как целое целого, или своими частями, или
как целое части. Но так как неделимое не имеет частей, им необходимо
касаться целиком, но касающееся целиком не образует непрерывного".
Невозможность составления непрерывного из неделимых и небходи-
мость его деления на всегда делимые части, установленные для величи-
ны, Аристотель распространяет на движение, пространство и время,
обосновывая (например, в "Физике") правомерность этого шага. С дру-
гой стороны, он приходит к выводу, что признание неделимых величин
противоречит основным свойствам движения. Выделение непрерывного и
прерывного как разных родов бытия послужило основой для размежевания
в логико-гносеологической области, для резкого отмежевания арифмети-
ки от геометрии.
"Началами... в каждом роде я называю то, относительно чего не
может быть доказано, что оно есть. Следовательно, то, что обозначает
первичное и из него вытекающее, принимается. Существование начал не-
обходимо принять, другое - следует доказать. Например, что такое
единица или что такое прямое или что такое треугольник (следует при-
нять); что единица и величина существует, также следует принять,
другое - доказать". В вопросе о появлении у людей способности позна-
ния начал Аристотель не соглашается с точкой зрения Платона о врож-
денности таких способностей, но и не допускает возможности приобре-
тения их; здесь он предлагает следующее решение: "необходимо обла-
дать некоторой возможностью, однако не такой, которая превосходила
бы эти способности в отношении точности". Но такая возможность, оче-
видно, присуща всем живым существам; в самом деле, они обладают при-
рожденной способностью разбираться, которая называется чувственным
восприятием. Формирование начал идет "от предшествующего и более из-
вестного для нас", то есть от того, что ближе к чувственному воспри-
ятию к "предшествующему и более известному безусловно" (таким явля-
ется общее). Аристотель дает развернутую классификацию начал, исходя
из разных признаков.
Во-первых, он выделяет "начала, из которых (что-либо) доказыва-
ется, и такие, о которых (доказывается)". Первые "суть общие (всем
начала)", вторые - "свойственные (лишь данной науке), например, чис-
ло, величина". В системе начал общие занимают ведущее место, но их
недостаточно, так как "среди общих начал не может быть таких, из ко-
торых можно было бы доказать все". Этим и объясняется, что среди на-
чал должны быть "одни свойственны каждой науке в отдельности, другие
- общие всем". Во-вторых, начала делятся на две группы в зависимости
от того, что они раскрывают: существование объекта или наличие у не-
го некоторых свойств. В-третьих, комплекс начал доказывающей науки
делится на аксиомы, предположения, постулаты, исходные определения.
Выбор начал у Аристотеля выступает определяющим моментом пост-
роения доказывающей науки; именно начала характеризуют науку как
данную, выделяют ее из ряда других наук. "То, что доказывается",
можно трактовать очень широко. С одной стороны, это элементарный до-
казывающий силлогизм и его заключения. Из этих элементарных процес-
сов строится здание доказывающей науки в виде отдельно взятой тео-
рии. Из них же создается и наука как система теорий. Однако не вся-
кий набор доказательств образует теорию. Для этого он должен удов-
летворять определенным требованиям, охватывающим как содержание до-
казываемых предложений, так и связи между ними. В пределах же науч-
ной теории необходимо имеет место ряд вспомогательных определений,
которые не являются первичными, но служат для раскрытия предмета те-
ории.
Хотя вопросы методологии математического познания и не были из-
ложены Аристотелем в какой-то отдельной работе, но по содержанию в
совокупности они образуют полную систему. В основе философии матема-
тики Аристотеля лежит понимание математических знаний как отражения
объективного мира. Эта установка сыграла важную роль в борьбе Арис-
тотеля с платоновым идеализмом; ведь "если в явлениях чувственного
мира не находится вовсе математическое, то каким образом возможно,
что к ним прилагаются его свойства?" - писал он. Разумеется, матери-
ализм Аристотеля был непоследовательным, в целом его воззрения в
большей степени соответствовали потребностям математического позна-
ния, сем взгляды Платона. В свою очередь математика была для Аристо-
теля одним из источников формирования ряда разделов его философской
системы.
| |
|