| |
В координатной форме уравнение движения имеет вид:
Jx=(R кр - Px сум)/Gx*98100 3.1.1
Jy=(T кр - Py сум)/Gy*98100 3.1.2
Для решения данных диффренциальных уравнений используем
численный метод РУНГЕ-КУТТА второго порядка. Для эгого урав-
нения 3.1.1 и 3.1.2 преобразуем следующим образом:
dVx/df = 98100/6n*(R к - Px сум)/Gx 3.1.3
dX /df = Vx/6n 3.1.4
dVy/df = 98100/6n*(T к - Py сум)/Gy 3.1.5
dY /df = Vy/6n 3.1.6
где: X и Y [мм] - координаты центра смещенной втулки,
Vx=dX/dt [мм/сек] - скорость смещения центра "
Vy=dY/dt " " " " ,
Jx=dVx/dt[мм/сек ]- ускорение " " "
Jy=dVy/dt " " " " " ,
Gx [КГ] - масса подвижного элемента вдоль оси x,
Gy [КГ] - масса подвижного элемента вдоль оси y,
R к [КГ] - радиальная сила,
T к [КГ] - тангенциальная сила,
Px сум[КГ] - составляющие гидродинамических сил
Py сум[КГ] (внутренних сил в слое смазки),
f [ град] - угол поворота коленчатого вала,
n [об/мин] - частота вращения,
98100 мм/сек -ускорение силы тяжести.
3.2 МАССА ПОДВИЖНОГО ЭЛЕМЕНТА
При расчете шатунного подшипника следует учитывать, что
при движении вдоль оси шатуна инертной массой является масса
комплектого поршня и шатуна, а при движении перпендикулярно
оси шатуна инертной массой является масса приведенная к ниж-
ней головке шатуна.
Существуют два метода приведения массы шатуна к нижней
головке:
- масса шатуна разделяется на две части (широко расп-
ространенный способ, требующий развесовки на двух весах) и
- масса шатуна разделяется на три части ( способ требует
определения момента инерции шатуна).
Далее будет использован первый способ.
- 15 -
Поскольку система координат связана с неподвижным эле-
ментом - шейкой коленчатого вала и относительно этого эле-
мента определяются внешние и внутренние силы, то инерционные
массы должны быть определены также относительно этой непод-
вижной системы координат.
Однако, на данном этапе работы этот вопрос не рассмотрен
и при расчетах динамики движения массы приняты равными.
3.3 РЕАКЦИЯ МАСЛЯНОГО СЛОЯ. ВНУТРЕННЯЯ СИЛА
квазистатические поля
Внутренняя сила определяет несущую способность подшипни-
ка. Составляющие этой силы определены в параграфе 2.2,
формулы 2.2.5 и 2.2.6.
Однако, как показали предворительные расчеты, с точки
зрения ускорения расчета, из-за возможности избежать через-
вычайно мелкого дробления шага, рациональнее предварительно
получить квазистатические поля сотавляющих несущей способ-
ности гидродинамического слоя смазки, а затем интерполяцией
из них получать соответствующую величину несущей способнос-
ти. Под квазистатическими полями имеются ввиду трехмерные
зависимости несущей способности от: смещения, скорости сме-
щения по направлению смещения и скорости смещения перпенди-
куляртно смещению.
Примеры влияния этих трех факторов приведены в разделе 2.
На основании предварительных расчетов установлено, что по
смещению интерполяция должна быть квадратичной, интерполяция
по скоростям движения центра может быть линейной.
3.4 ВНЕШНЯЯ НАГРУЗКА
Внешняя нагрузка на подшипник определяется традиционным
динамическим расчетом двигателя. Поэтому в данном параграфе
приведны конечные формулы для определения внешних усилий,
действующих вдоль оси радиуса кривошипа, так называемая ра-
диальная сила R кол, и перпендикулярно радиусу кривошипа -
тангенциальная сила T кас.
Сила, действующая вдоль шатуна
P шат =(P пост - P газ)/ tg(b) 3.4.1
Радиальная сила, действующая на кривошип
R кол = P шат*cos(f+b) + P вр 3.4.2
Тангенциальная сила
T кас = P шат *sin(f+b) 3.4.3
где: P пост - сила инерции поступательно движущихся масс,
P газ - сила давления газов,
P вр - сила инерции вращательно движущихся масс шатуна,
b - угол отклонения шатуна,
f - угол поворота кривошипа
- 16 -
3.5 ПРИМЕР ОПРЕДЕЛЕНИЯ ТРАЕКТОРИИ ДВИЖЕНИЯ
ЦЕНТРА ПОДШИПНИКА
В данном параграфе приведен такой режим нагружения, при
котором сухое трение не возникает. Вопросы расчета сухого
трения будут рассмотрены в дальнейшем.
3.5.1 На рис. 3.5.1 приведен пример движения центра подшипника
в условиях отсутствия сухого трения. Центр может двигаться в
пределах круга очерченного радиусом радиального зазора (в
качестве примера использован первый цикл расчета). На данном
рисунке представлен расчет на режиме n=2000 об/мин.
На графике четко видна начальная точка расчета. Для этой
точки выбираются произвольные начальные условия. Проще всего
в качестве начальных условий принять стационарное соосное
положение центров:
X=0, Y=0, Vx=0, Vy=0 3.5.1
Далее видно, что примерно через 60 градусов смещение вы-
ходит на квазистационарный режим, т.е. для точного определе-
ния начальных условий достаточно одного цикла расчета.
3.5.2 На рис. 3.5.2 даны развернутые по углу поворота коленча-
того вала диаграммы минимальных зазоров в подшипнике и
максимальных гидродинамических давлений для того же случая
расчета, что и на рис. 3.5.1. Как видно из графика максималь-
ные гидродинамические давления на данном режиме могут пре-
восходить 600 кг/см2.
- 17 -
4. КОНТАКТ ПОВЕРХНОСТЕЙ. СУХОЕ ТРЕНИЕ
4.1 ГЕОМЕТРИЧЕСКИЕ СООТНОШЕНИЯ при контакте
Траектория движения центра подшипника зависит от многих
факторов, и в зависимости от нагрузки могут возникнуть ситу-
ации, когда нарушаются условия гидродинамической смазки,
т.е. возникает непосредственный контакт поверхностей шейки и
подшипника, что приводит к сухому трению.
ПРОВЕРКА НАЛИЧИЯ КОНТАКТА
В прцессе счета постоянно проверяется условие наличия
зазора
Z =sqrt(Xo*Xo + Yo*Yo)/ R, 4.1.1
если Z=1, то это служит признаком контакта,
если Z>1, что может случиться, поскольку проводится числен-
ное интегрирование, то вводится искусственная коректировка
смещений
Xo = Xo/ Z 4.1.2
Yo = Yo/ Z 4.1.3
где: Xo и Yo в левой части обозначены те же смещения, что и в
правой части после их уменьшения в Z раз.
Направление точки контакта определяется соотношением
fконт = arc Tg( Yo / Xo)+180 4.1.4
СКОРОСТЬ СМЕЩЕНИЯ
В условиях сухого трения кинематика взаимного движения
центров шипа и втулки определяется условиями касания двух
окружностей в точке, определенной соотношением 4.1.4.
В момент контакта поверхностей относительная нормальная
скорость поверхностей подшипника обращается в НУЛЬ.
Vn = Vx*cos(f конт) + Vy*sin(f конт) =0 4.1.5
Касательная скорость при этом бутет иметь значение
Vk = Vy*cos(f конт) - Vx*sin(f конт) 4.1.6
Из этих двух уравнений определить новые значения скорос-
тей Vx и Vy в условиях контакта.
Vx = -Vk*sin(f конт) 4.1.7
Vy = Vk*cos(f конт) 4.1.8
4.2 КОНТАКТНЫЕ УСИЛИЯ в точке касания
4.2.1 На рис. 4.2.1 дана схема сил, действующая в условиях
контакта.
Векторами .X и .Y обозначены обычные равнодействующие
внешней нагрузки и внутренних сил, подсчитанных из предполо-
жения, что работает нормальная гидродинамика.
- 18 -
X = Xвнш - Xвну 4.2.1
Y = Yвнш - Yвну 4.2.2
Суммарная сила Р этих двух составляющих разложена по
напралению контакта поверхностей Pn и перпендикулярно к нему
по касательной к точке контакта Pk.
Pn =(X*cos(f конт) + Y*sin(f конт)) 4.2.3
Pk =(Y*cos(f конт) - X*sin(f конт)) 4.2.4
На режиме контакта нормальная составляющая уравновешива-
ется равным по величине и обратным по знаку контактным
усилием, величина которого равна
Pконт= -Pn 4.2.5
Одновременно в точке контакта возникает сила сухого тре-
ния, которая на подвижной детали направлена против движения
и, в принятой системе координат всегда положительна
Рсух = m* Pконт 4.2.6
где: m -коэффициент сухого трения, величина которого задается.
Касательная сила совместно с силой сухого трения опреде-
ляют движение центров на режиме контакта поверхностей
К = Pk + Pсух 4.2.7
Для этого силу "К" разложим по координатным осям
X = -K*sin(f конт) 4.2.8
Y = K*cos(f конт) 4.2.9
Характер изменения контактных усилий на шейку и вкладыш
лучше предствить в форме контактных напряжений ( см. 4.4 ).
4.3 ПРИМЕР РАСЧЕТА СМАЗКИ в условиях нарушения ГИДРОДИНАМИКИ
4.3.1 Пример движения центра вкладыша подшипника при возникно-
вении сухого трения дан на рис. 4.3.1. На этом рисунке при-
веден график движения центра того же подшипника, что и на
рис. 3.5.1, но при 1000 об/мин. Как видно из рисунка в райо-
не сгорания имеется участок сухого трения.
Срвнение графиков на рис. 3.5.1 и 4.3.1 показывает, что
на них есть заметное сходство и существенные различия. Раз-
личие появляется в районе процесса сгорания, где имеет место
наибольшее различие во внешних нагрузках. На этом участке
возникает сухое трение.
4.3.2 На рис. 4.3.2 приведена в развернутом виде полярная ди-
аграмма, данная на на рис. 4.3.1. На графике минимальных за-
зоров в интервале от 370 до 452 градусов угла п.к.в. четко
просматривается участок сухого трения. На этом участке возни-
кают нормальные контактные напряжения и появляется работа
сухого трения, что показано на верхнем графике. На этом гра-
фике видно, каков характер изменений сухого трения.
На нижнем графике дана кривая максимальных гидродинами-
ческих давлений. В районе сгорания возникает наибольшее гид-
родинамическое давление. На данном графике эта величина
достигает Р = 1200 кг/см2.
Затем гидродинамика смазки восстанавливается.
- 19 -
4.4 КОНТАКТНЫЕ НАПРЯЖЕНИЯ.
Естественно, что усилия определенные по условию 4.2.5,
являются причиной износа поверхностей подшипника, но дейст-
вуют они на эти поверхности различно из-за их относительного
перемещения.
Оценка работы поднипников обычно осуществляется по
удельным давлениям в подшипниковой паре. Вычисляется удель-
ное давление по элементпрной формуле:
Pmax
Kmax = --------- 4.4.1
B*D
где: Pmax - максимальная нагрузка,
B и D - диаметр и ширина подшипника.
Между тем для определения удельного давления между дета-
лями с цилиндрическими поверхностями существует формула Гер-
ца, которая для пары вогнутой и выпуклой цилиндрических
поверхностей имеет вид
Pmax * E 1 1
C max = 0.418 * -----------*(--- - ---) 4.4.2
B R1 R2
где: R1 - радиус шейки,
R2 - радиус втулки,
R=R2-R1 - радиальный зазор,
E - приведенный модуль упругости
1 1 1
------ = ------ + -------- 4.4.3
E E1 E2
E1 - модуль упругости материала шейки,
E2 - модуль упругости материала втулки,
Поскольку R<<R1 , то справедливо записать
1 1 R
(--- - ---) = --------
R1 R2 R1**2
таким образом удельные контактные давления будут:
Pmax * E * R
C max = 0.418 * -------------- 4.4.4
B * R1
Эта формула дает способы, с помощью которых можно
снизить контактное давление.
Соотношение удельного давления полученного по формуле
4.4.1 , полученного по формуле Герца 4.4.4 определяется так:
K max 1 P max
------- = -------- * ------------ 4.4.5
C max 2* 0.418 E* B* R
Если сопоставить эти величины для конкретных значений
использованных в примерах, то получим С max/ Р max= 2.37,
откуда видно, что контактные напряжения по Герцу больше мак-
симальных значений, получаемых традиционным расчетом.
4.4.1 На рис. 4.4.1 приведены графики распределения контактных
напряжений по указанным поверхностям. Режим расчета соот-
ветствует рис. 4.3.1. Как видно из графиков, максимумы уси-
лий одинаковы, но по поверхности вкладыша контактные напря-
жения распределены на большем диапозоне углов.
- 20 -
4.5 РАБОТА СУХОГО ТРЕНИЯ
Работа сухого трения может быть определена только чис-
ленным интегрированием
Атр = m*R* f Pконт 4.5.1
где; - шаг интегрирования по углу поворота колен.вала.
Интегрирование может осуществляться за полный цикл, при от-
сутствии контакта автоматически принимается Р конт =0.
Однако, эта общая интегральная оценка явно недостаточна
для всесторонней оценки работы подшипника. Поскольку работа
трения это синоним износа поверхностей подшипника, то боль-
шой интерес представляет распределение работы трения по эле-
ментарным поверхностям обох трущихся поверхностей.
Вычисление работы трения для каждого локального элемента
каждой поверхности не представляет большой трудности. Для
этого интегрирование работы трения необходимо проводить по
формуле 4.5.1 , но каждый раз обращаясь к конкретным контак-
тирующим элементам.
На рис. 4.5.1 приведены графики работы трения и износа
для каждого элемента поверхности шейки и вкладыша.
Кривые 1 и 2 относятся к шатунной шейке. Кривая 1 - это
работа трения распределенная по каждому контактирующему эле-
менту шейки. Интегрально - это общая работа сухого трения в
подшипнике. Кривая 2 представляет износ шатунной шейки в ре-
зультате действия работы трения. Эти кривые эквидистантны.
износ=(коэфф.износа)*(работа трения)
Для получения кривой износа необходимо знать соответс-
твующий коэффициент износа, размерность которого должна быть
износ* ширина шейки микрон * мм
----------------------- ----------
(удельная работа)*время кг*мм/мм2 * сек
В рассматриваемых примерах этот коэффициент выбран ори-
ентировочно.
Кривые 3 и 4 относятся к поверхности Далее
| |
|